Sabtu, 07 November 2009

KUMPULAN SOAL MATEMATIKA KELAS X

Materi:
1. Bentuk Pangkat, Akar dan Logaritma
2. Persamaan dan Fungsi Kuadrat
3. Sistem Persamaan Linear dan Kuadrat
4. Pertidaksamaan
5. Trigonometri
6. Logika Matematika
7. Dimensi Tiga
SOAL
Petunjuk:
Pilihlah salah satu jawaban yang paling tepat !
1. Persamaan px2 - 4x + 3 = 0 mempunyai akar-akar yang sama. Nilai p = ....
A.
3
4 -
B.
4
3 -
C.
4
1 -
D.
4
3
E.
3
4
2. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah ....
A. x2 + 7x +10 = 0
B. x2 - 7x +10 = 0
C. x2 + 3x +10 = 0
D. x2 + 3x -10 = 0
E. x2 - 3x -10 = 0
3. Diketahui persamaan kuadrat 2x2 + 3x + 5 = 0 akar-akarnya 1 x dan 2 x . Persamaan
kuadrat baru yang akar-akarnya
1
1
x
dan
2
1
x
adalah ....
A. 5x2 - 3x + 2 = 0
B. 5x2 + 3x + 2 = 0
C. 5x2 - 3x - 2 = 0
D. 5x2 + 3x - 2 = 0
E. 3x2 + 3x - 5 = 0
4. Akar-akar persamaan kuadrat x2 - 4x + 6 = 0 adalah 1 x dan 2 x . Nilai + 2 =
2
2
1
x x ....
A. -8
B. -4
2
C. 4
D. 20
E. 28
5. Koordinat titik balik fungsi kuadrat: f (x) = 2x2 - 4x +1 adalah ....
A. (1,1)
B. (-1,1)
C. (1,-1)
D. (2,-1)
E. (-2,1)
SUMBER : http://soalmatematika.com.

SOAL PERSIAPAN UJIAN AKHIR SEMESETER 1 UNTUK SD KELAS III

Pilihlah salah jawaban yang paling tepat !

Pada bilangan 304, angka 4 menempati nilai tempat

A. ribuan
B. ratusan
C. puluhan
D. satuan


284 = 200 + … + 4. Bilangan dalam titik-titik adalah ….
E. 8
F. 80
G. 800
H. 8.000

Lambang bilangan dari lima ratus dua puluh satu adalah ....
I. 502
J. 512
K. 520
L. 521

Manakah di antara bilangan berikut yang 100 lebihnya dari 698 ?
M. 699
N. 708
O. 798
P. 898


158 kurangnya dari 580 adalah ....
Q. 400
R. 422
S. 432
T. 438

950, 943, ...., 929. Bilangan yang tepat untuk melengkapi pola bilangan di atas adalah ....
U. 736
V. 836
W. 936
X. 963

312 = .... x 8. Bilangan dalam kotak adalah ....
Y. 25
Z. 37
AA. 39
BB. 42


6 x 5 = .....
CC. 6 x 6 x 6 x 6 x 6
DD. 5 + 5+ 5 + 5 + 5
EE. 65
FF. 6 + 5

77 x 5 = .....
GG. 357
HH. 375
II. 380
JJ. 385

Hasil bagi dari 834 : 6 adalah ....
KK. 139
LL. 140
MM. 144
NN. 149

LATIHAN UMUM SEMESTER 1 UNTUK SD KELAS IV

A. Pilihlah salah satu jawaban yang paling tepat !
1. 15 x 7 = a x 15. Nilai a yang tepat adalah ….
A. 7
B. 10
C. 15
D. 105
2. 5 x (216 – 127) = ….
E. 5 x (216 + 127)
F. (5 – 216) x (5 – 127)
G. (5 x 216) – (5 – 127)
H. (5 x 216) – (5 x 127)
3. Pernyataan yang benar di bawah ini adalah ….
I. 421.165 < 412.561
J. 412.165 > 412.516
K. 412.561 < 412.165
L. 421.651 > 421.615
4. Angka 7 pada lambang bilangan 374.605 menempati tempat ….
M. puluhan ribu
N. ribuan
O. ratusan
P. puluhan
5. 3.675 : 7 : 5 = ….
Q. 75
R. 85
S. 105
T. 115
6. Taksiran yang paling baik dari 82 x 45 adalah ….
U. 3.200
V. 3.600
W. 4.000
X. 4.500
7. Kelipatan 3 antara 7 dan 20 adalah ….
Y. 7, 10, 13, 16
Z. 10, 13, 16, 19
AA. 9, 12, 15, 18
BB. 9, 12, 15, 19
8. Kelipatan persekutuan terkecil dri 60 dan 90 adalah ….
CC. 120
DD. 180
EE. 240
FF. 270
9. Faktor persekutuan terbesar dari 48 dan 64 adalah ….
GG. 16
HH. 18
II. 24
JJ. 32
10. Urutan sudut di samping dari terbesar hingga terkecil adalah ….
KK.sudut ABC
LL.sudut ACB
MM.sudut BAC
NN.sudut CAB

SOAL PERSIAPAN UJIAN AKHIR SEMESTER 1 UNTUK KELAS V SD

Petunjuk:
Tulislah jawaban Anda pada tempat yang disediakan. Tulislah satuannya jika ada.

Pada bilangan 892.671, angka ..... ada di tempat puluh ribuan.

239 x 63 + 239 x 27 = ....
Bilangan pada titik-titik di atas adalah ....

FPB dari 90 dan 120 adalah ....

Akar kuadrat dari 1.369 adalah ....

-75 .... – 91. Tanda pembanding (<, =, >) dalam kotak adalah ....

-78 – (-183) = ....
Bilangan pada titik-titik di atas adalah ....

54 + (-28) = ....
Bilangan pada titik-titik di atas adalah ....

Bilangan -256 jika dibagi 32 hasilnya adalah .....

Pukul 11.45 malam adik terbangun setelh bermimpi buruk. Pukul 11.45 malam jika ditulis dalam notasi 24 jam adalah ....


Rina belajar dari pukul 18.45 sampai pukul 20.25. Berapa menitkah lama Rina belajar ?


Perhatikan gambar di bawah ini.
Jika sudut a = 40o, maka sudut b = ....

Latihan Ulangan Umum Semester 1 Untuk SD Kelas VI

Jumlah soal lengkap: 20 soal pilihan ganda + 10 soal uraian

A. Pilihlah salah satu jawaban yang paling tepat !

615 – (60 x 4) + 2.800 : (-35) = ....
A. 285
B. 295
C. 300
D. 315

FPB dari bilangan 70, 84, dan 98 adalah .....
E. 14
F. 28
G. 56
H. 98

KPK dari bilangan 28 dan 42 adalah .....
I. 12
J. 42
K. 48
L. 84

34 x (n x 48) = (34 x 60) x 48; n = ....
M. 34
N. 48
O. 60
P. 64

63 + 83 – 53 = ....
Q. 503
R. 603
S. 712
T. 715


U. 12
V. 14
W. 16
X. 18

Jari-jari sebuah lingkaran 14 cm, luas lingkaran adalah .... cm2.
Y. 816
Z. 756
AA. 716
BB. 616

50 dm3/detik = .... cm3/detik.
CC. 6.500
DD. 8.000
EE. 50.000
FF. 60.000

Diameter lingkaran 21 cm. Luas lingkaran adalah .... cm2.
GG. 154
HH. 158
II. 160
JJ. 200

25 x (40-n) = (25 x 40) – (25 x 32) ; n = ....
KK. 32
LL. 36
MM. 42
NN. 46

Faktor persekutuan terbesar pembilang dan penyebut dari pecahan 84/98 adalah ....
OO. 32
PP. 36
QQ. 42
RR. 46

Kumpulan Soal-Soal Matematika

Soal-soal matematika SMA(soal persamaan dan fungsi kuadrat)
Materi Pokok : Persamaan Kuadrat
1. Persamaan kuadrat x2 – 5x + 6 = 0 mempunyai akar – akar x1 dan x2. Persamaan kuadrat yang akar – akarnya x1 – 3 dan x2 – 3 adalah ….
a. x2 – 2x = 0
b. x2 – 2x + 30 = 0
c. x2 + x = 0
d. x2 + x – 30 = 0
e. x2 + x + 30 = 0
2. Diketahui sebidang tanah berbentuk persegi panjang luasnya 72 m2. Jika panjangnya tiga kali lebarnya, maka panjang diagonal bidang tersebut adalah …m.
a. 2
b. 6
c. 4
d. 4
e. 6
3. Pak Musa mempunyai kebun berbentuk persegi panjang dengan luas 192 m2. Selisih panjang dan lebarnya adalah 4 m. Apabila disekeliling kebun dibuat jalan dengan lebar 2 m, maka luas jalan tersebut adalah …m2.
a. 96
b. 128
c. 144
d. 156
e. 168

4. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB = … cm.

a. 4
b. 4 –
c. 8 – 2
d. 4 – 2
e. 8 – 4
5. Kawat sepanjang 120 m akan dibuat kerangka seperti pada gambar. Agar luasnya maksimum, panjang kerangka (p) tersebut adalah … m.

a. 16
b. 18
c. 20
d. 22
e. 24
6. Diketahui akar – akar persamaan kuadrat 2x2 – 4x + 1 = 0 adalah dan . Persamaan kuadrat baru yang akar – akarnya dan adalah ….
a. x2 – 6x + 1 = 0
b. x2 + 6x + 1 = 0
c. x2 – 3x + 1 = 0
d. x2 + 6x – 1 = 0
e. x2 – 8x – 1 = 0
7. Persamaan 2x2 + qx + (q – 1) = 0 mempunyai akar – akar x1 dan x2. Jika x12 + x22 = 4, maka nilai q = ….
a. – 6 dan 2
b. – 6 dan – 2
c. – 4 dan 4
d. – 3 dan 5
e. – 2 dan 6
8. Jika nilai diskriminan persamaan kuadrat 2x2 – 9x + c = 0 adalah 121, maka c = ….
a. – 8
b. – 5
c. 2
d. 5
e. 8
9. Persamaan (1 – m)x2 + ( 8 – 2m )x + 12 = 0 mempunyai akar kembar, maka nilai m = ….
a. – 2
b.
c. 0
d.
e. 2
10. Jika x1 dan x2 adalah akar – akar persamaan kuadrat x2 + x – p = 0, p kostanta positif, maka dan = ….
a.
b.
c.
d.
e.
11. Persamaan kuadrat x2 + (m – 2)x + 9 = 0 mempunyai akar – akar nyata. Nilai m yang memenuhi adalah ….
a. m – 4 atau m 8
b. m – 8 atau m 4
c. m – 4 atau m 10
d. – 4 m 8
e. – 8 m 4
12. Peramaan kuadrat mx2 + ( m – 5 )x – 20 = 0, akar – akarnya saling berlawanan. Nilai m = ….
a. 4
b. 5
c. 6
d. 8
e. 12
13. Jika x1 dan x2 adalah akar – akar persamaan kuadrat x2 + px + 1 = 0, maka persamaan kuadrat yang akar - akarnya dan x1 + x2 adalah ….
a. x2 – 2p2x + 3p = 0
b. x2 + 2px + 3p2 = 0
c. x2 + 3px + 2p2 = 0
d. x2 – 3px + p2 = 0
e. x2 + p2x + p = 0
14. Akar – akar persamaan 2x2 + 2px – q2 = 0 adalah p dan q. Jika p – q = 6 maka nilai pq = ….
a. 6
b. – 2
c. – 4
d. – 6
e. – 8
Materi Pokok : Fungsi Kuadrat
15. Perhatikan gambar !

a. x2 + 2x + 3= 0
b. x2 – 2x – 3 = 0
c. – x2 + 2x – 3 = 0
d. – x2 – 2x + 3 = 0
e. – x2 + 2x + 3 = 0
16. Suatu fungsi kuadrat mempunyai nilai minimum –2 untuk x = 3 dan untuk x = 0 nilai fungsi 16. Fungsi kuadrat itu adalah ….
a. f(x) = 2x2 – 12x + 16
b. f(x) = x2 + 6x + 8
c. f(x) = 2x2 – 12x – 16
d. f(x) = 2x2 + 12x + 16
e. f(x) = x2 – 6x + 8
17. Nilai maksimum dari fungsi f(x) = –2x2 + (k+5)x + 1 – 2k adalah 5. Nilai k yang positif adalah ….
a. 5
b. 6
c. 7
d. 8
e. 9
18. Absis titk balik grafik fungsi f(x) = px2 + ( p – 3 )x + 2 adalah p. Nilai p = ….
a. – 3
b.
c. – 1
d.
e. 3

Soal-soal matematika SMA(soal program linier)
1. Luas daerah parkir 1.760 m2. Luas rata – rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp. 2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak kendaraan yang pergi dan datang, maka hasil maksimum tempat parkir itu adalah ….
a. Rp. 176.000,00.
b. Rp. 200.000,00.
c. Rp. 260.000,00.
d. Rp. 300.000,00.
e. Rp. 340.000,00.
2. Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp. 8.000,00/kg dan pisang Rp. 6.000,00/kg. Modal yang tersedia Rp. 1.200.000,00 dan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp. 9.200,00/kg dan pisang Rp. 7.000,00/kg, maka laba maksimum yang diperoleh adalah ….
a. Rp. 150.000,00.
b. Rp. 180.000,00.
c. Rp. 192.000,00.
d. Rp. 204.000,00.
e. Rp. 216.000,00.
3. Tanah seluas 10.000 m2 akan dibangun rumah tipe A dan tipe B. Untuk tipe A diperlukan 100 m2 dan dan tipe B diperlukan 75 m2. Jumlah rumah yang akan dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp. 6.000.000,00/unit dan tipe B adalah Rp. 4.000.000,00/unit. Keuntungan maksimum yang dapat diperoleh daru penjualan rumah tersebut adalah ….
a. Rp. 550.000.000,00.
b. Rp. 600.000.000,00.
c. Rp. 700.000.000,00.
d. Rp. 800.000.000,00.
e. Rp. 900.000.000,00.
4. Suatu tempat parkir yang luasnya 300 m2 digunakan untuk memarkir sebuah mobil dengan rata – rata 10 m2 dan untuk bus rata – rata 20 m2 dengan daya tampung hanya 24 kendaraan. Biaya parkir untuk mobil Rp. 1.000,00/jam dan untuk bus Rp. 3.000,00/jam. Jika dalam satu jam tempat parkir terisi penuh dan tidak ada kendaraan yang dating dan pergi, hasil maksimum tempat parkir iru adalah ….
a. Rp. 15.000,00.
b. Rp. 30.000,00.
c. Rp. 40.000,00.
d. Rp. 45.000,00.
e. Rp. 60.000,00.
5. Nilai maksimum fungsi obyektif 4x + 2y pada himpunan penyelesaian system pertidaksamaan x + y 4, x + y 9, –2x + 3y 12, 3x – 2y 12 adalah ….
a. 16
b. 24
c. 30
d. 36
e. 48
6. Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x + 4y 48, x 0, y 0 adalah ….
a. 120
b. 118
c. 116
d. 114
e. 112
7. Untuk menambah penghasilan, seorang ibu setiap harinya memproduksi dua jenis kue untuk dijual. Setiap kue jenis I modalnya Rp. 200,00 dengan keuntungan 40%, sedangkan setiap kue jenis II modalnya Rp. 300,00 dengan keuntungan 30%. Jika modal yang tersedia setipa harinya adalah Rp. 100.000,00 dan paling banyak hanya dapat memproduksi 400 kue, maka keuntungan tersbesar yang dapat dicapai ibu tersebut adalah ….
a. 30%
b. 32%
c. 34%
d. 36%
e. 40%
8. Nilai minimum fungsi obyektif 5x + 10y pada himpunan penyelesaian system pertidaksamaan yang grafik himpunan penyelesaiannya disajikan pada gambar di bawah ini adalah ….

a. 400
b. 320
c. 240
d. 200
e. 160

soal-soal matematika SMA(soal turunan)
Materi Pokok : Turunan dan Turunan Berantai
1. Jika f(x) = sin² ( 2x + π/6 ), maka nilai f′(0) = ….
a. 2√3
b. 2
c. √3
d. ½√3
e. ½√2
2. Turunan pertama dari f(x) = sin ( 3x² – 2 ) adalah f’(x) = ….
a. 2 sin² ( 3x² – 2 ) sin ( 6x² – 4 )
b. 12x sin² ( 3x² – 2 ) sin ( 6x² – 4 )
c. 12x sin² ( 3x² – 2 ) cos ( 6x² – 4 )
d. 24x sin³ ( 3x² – 2 ) cos² ( 3x² – 2 )
e. 24x sin³ ( 3x² – 2 ) cos ( 3x² – 2 )
3. Turunan dari f(x) = adalah f’(x) = ….
a.
b.
c.
d.
e.
4. Turunan pertama f(x) = cos³ x adalah ….
a.
b.
c.
d.
e.
5. Jika f(x) = ( 2x – 1 )² ( x + 2 ), maka f’(x) = ….
a. 4 ( 2x – 1 ) ( x + 3 )
b. 2 ( 2x – 1 ) ( 5x + 6 )
c. ( 2x – 1 ) ( 6x + 5 )
d. ( 2x – 1 ) ( 6x + 11 )
e. ( 2x – 1 ) ( 6x + 7 )
6. Turunan pertama dari fungsi f yang dinyatakan dengan f(x) = adalah f ’, maka f’(x) = ….
a.
b.
c.
d.
e.
7. Diketahui f(x) = , Jika f’(x) adalah turunan pertama dari f(x), maka nilai f’(2) = ….
a. 0,1
b. 1,6
c. 2,5
d. 5,0
e. 7,0
8. Diketahui , Nilai f’(4) = ….
a. 1/3
b. 3/7
c. 3/5
d. 1
e. 4
9. Jika f(x) = , maka
a.
b.
c.
d.
e.
10. Turunan pertama fungsi f9x) = (6x – 3)³ (2x – 1) adalah f’(x). Nilai dari f’(1) = ….
a. 18
b. 24
c. 54
d. 162
e. 216
Soal Ujian Nasional tahun 2001
11. Diketahui f(x) = sin³ (3 – 2x). Turunan pertama fungsi f adalah f’(x) = ….
a. 6 sin² (3 – 2x) cos (3 – 2x)
b. 3 sin² (3 – 2x) cos (3 – 2x)
c. –2 sin² (3 – 2x) cos (3 – 2x)
d. –6 sin (3 – 2x) cos (6 – 4x)
e. –3 sin² (3 – 2x) sin (6 – 4x)

Materi Pokok : Aplikasi Turunan
12. Perhatikan gambar !

Luas daerah yang diarsir pada gambar akan mencapai maksimum jika koordinat titik M adalah ….
a. ( 2,5 )
b. ( 2,5/2 )
c. ( 2,2/5 )
d. ( 5/2,2 )
e. ( 2/5,2 )
13. Persamaan garis singgung kurva y = ³√( 5 + x ) di titik dengan absis 3 adalah ….
a. x – 12y + 21 = 0
b. x – 12y + 23 = 0
c. x – 12y + 27 = 0
d. x – 12y + 34 = 0
e. x – 12y + 38 = 0
14. Suatu pekerjaan dapat diselesaikan dalam x hari dengan biaya ( 4x – 160 + 2000/x )ribu rupiah per hari. Biaya minmum per hari penyelesaian pekerjaan tersebut adalah ….
a. Rp. 200.000,00
b. Rp. 400.000,00
c. Rp. 560.000,00
d. Rp. 600.000,00
e. Rp. 800.000,00
15. Suatu perusahaan menghasilkan produk yang dapat diselesaikan dalam x jam, dengan biaya per jam ( 4x – 800 + 120/x ) ratus ribu rupiah. Agar biaya minimum, maka produk tersebut dapat diselesaikan dalam waktu … jam.
a. 40
b. 60
c. 100
d. 120
e. 150
16. Persamaan gerak suatu partikel dinyatakan dengan rumus s = f(t) = ( s dalam meter dan t dalam detikk ). Kecepatan partikel tersebut pada saat t = 8 adalah … m/det.
a. 3/10
b. 3/5
c. 3/2
d. 3
e. 5
17. Suatu perusahaan memproduksi x buah barang. Setiap barang yang diproduksi memberikan keuntungan ( 225x – x² ) rupiah. Supaya total keuntungan mencapai maksimum, banyak barang yang harus diproduksi adalah ….
a. 120
b. 130
c. 140
d. 150
e. 160
18. Persamaan garis inggung pada kurva y = –2x + 6x + 7 yang tegak lurus garis x – 2y + 13 = 0 adalah ….
a. 2x + y + 15 = 0
b. 2x + y – 15 = 0
c. 2x – y – 15 = 0
d. 4x – 2y + 29 = 0
e. 4x + 2y + 29 = 0
19. Luas sebuah kotak tanpa tutup yang alasnya persegi adalah 432 cm². Agar volume kotak tersebut mencapai maksimum, maka panjang rusuk persgi adalah … cm.
a. 6
b. 8
c. 10
d. 12
e. 16
20. Garis singgung pada kurva y = x² – 4x + 3 di titik ( 1,0 ) adalah ….
a. y = x – 1
b. y = –x + 1
c. y = 2x – 2
d. y = –2x + 1
e. y = 3x – 3
21. Grafik fungsi f(x) = x³ + ax² + bx +c hanya turun pada interval –1 < x < 5. Nilai a + b = ….
a. – 21
b. – 9
c. 9
d. 21
e. 24
22. Sebuah tabung tanpa tutup bervolume 512 cm³. Luas tabung akan minimum jika jari – jari tabung adalah … cm.
a.
b.
c.
d.
e.
23. Garis l tegak lurus dengan garis x + 3y + 12 = 0 dan menyinggung kurva y = x² – x – 6. Ordinat titik singgung garis l pada kurva tersebut adalah ….
a. – 12
b. – 4
c. – 2
d. 2
e. 4
24. Persamaan garis singgung kurva y = x di titik pada kurva dengan absis 2 adalah ….
a. y = 3x – 2
b. y = 3x + 2
c. y = 3x – 1
d. y = –3x + 2
e. y = –3x + 1
25. Fungsi y = 4x³ – 6x² + 2 naik pada interval ….
a. x < 0 atau x > 1
b. x > 1
c. x < 1
d. x < 0
e. 0 < x < 1
26. Nilai maksimum fungsi f(x) = x³ + 3x² – 9x dalam interval –3 ≤ x ≤ 2 adalah ….
a. 25
b. 27
c. 29
d. 31
e. 33
27. Nilai maksimum dari pada interval –6 ≤ x ≤ 8 adalah ….
a.
b.
c. 10
d. 8
e. 6

Soal-soal matematika SMA(soal matriks)
1. Diketahui matriks , , dan . Apabila B – A = Ct, dan Ct = transpose matriks C, maka nilai x.y = ….
a. 10
b. 15
c. 20
d. 25
e. 30
2. Diketahui matriks , , dan , At adalah transpose dari A. Jika At . B = C maka nilai 2x + y = ….
a. – 4
b. – 1
c. 1
d. 5
e. 7
3. Matriks X berordo ( 2 x 2 ) yang memenuhi adalah ….
a.
b.
c.
d.
e.
4. Diketahui matriks , , dan P(2x2). Jika matriiks A x P = B, maka matriks P adalah ….
a.
b.
c.
d.
e.
5. Diketahui hasil kali matriks . Nilai a + b + c + d = ….
a. 6
b. 7
c. 8
d. 9
e. 10
6. Diketahui matriks , , dan , Jika matriks A – B = C–1, nilai 2p = ….
a. – 1
b. –½
c. ½
d. 1
e. 2
7. Diketahui matriks , dan A2 = xA + yB. Nilai xy = ….
a. – 4
b. – 1
c. – ½
d. 1½
e. 2

soal-soal matematika SMA(soal trigonometri)
1. titik – titik ujung sebuah terowongan yang dilihat dari C dengan sudut ACB = 45°. Jika jarak CB = p meter dan CA = 2p√2 meter, maka panjang terowongan itu adalah … meter.
a. p √5
b. p √17
3√2 Materi Pokok : Aturan Kosinus dan Sinus
c. Diketahui A dan B adalah
d. 4p
e. 5p
2. Sebuah kapal berlayar dari pelabuhan A dengan arah 044° sejauh 50 Km. Kemudian berlayar lagi dengan arah 104° sejauh 40 Km ke pelabuhan C Jarak pelabuhan A ke C adalah ... Km.
a. 10 √95
b. 10 √91
c. 10 √85
d. 10 √71
e. 10 √61
3. Sebuah kapal berlayar kea rah timur sejauh 30 mil Kemudian melanjutkan perjalanan dengan arah 030° sejauh 60 mil. Jarak kapal terhadap posisi saat kapal berangkat adalah … mil.
a. 10 √37
b. 30 √7
c. 30 √(5 + 2√2)
d. 30 √(5 + 2√3)
e. 30 √(5 – 2√3)
4. Diketahui segitiga BAC dengan AB = 7 cm, BC = 5 cm, dan AC = 6 cm. Nilai sin BAC = ....
a. 5/7
b. 2/7 √6
c. 24/49
d. 2/7
e. 1/7 √6
5. Jika panjang sisi- sisi Δ ABC berturut – turut adalah AB = 4 cm, BC = 6 cm, dan AC = 5 cm, sedang sudut BAC = α, sudut ABC = β, sdut BCA = γ, maka sin α : sin β : sin γ = ….
a. 4 : 5 : 6
b. 5 : 6 : 4
c. 6 : 5 : 4
d. 4 : 6 : 5
e. 6 : 4 : 5
6. Nilai sinus sudut terkecil dari segitiga yang sisinya 5 cm, 6 cm, √21 cm adalah ….
a. 1/5 √21
b. 1/6 √21
c. 1/5 √5
d. 1/6 √5
e. 1/3 √5
7. Diketahui panjang jari – jari lingkaran luar Δ PQR seperti pada gambar adalah 4 cm dan panjang PQ = 6cm. Nilai cos sudut PQR = ....
a. 3/4 √7
b. 1/4 √7
c. 3/7 √7
d. 1/3 √7
e. 4/7 √7
8. Nilai cos sudut BAD pada gambar adalah ….

a. 17/33
b. 17/28
c. 3/7
d. 30/34
e. 33/35
9. Diketahui Δ PQR dengan PQ = 6 cm, QR = 4 cm, dan sudut PQR = 90°. Jika QS garis bagi sudut PQR, panjang QS = ….
a. 12/10 √2
b. 12/5 √2
c. 24/5 √2
d. 5/6 √2
e. 6√2
10. Luas segitiga ABC adalah ( 3 + 2√3 ) cm. Jika panjang sisi AB = ( 6 + 4√3 ) cm dan BC = 7 cm, maka nilai sisi ( A + C ) = ….
a. 6√2
b. 6√2
c. ½
d.
e.
Materi Pokok :
11. Nilai dari cos 40°+ cos 80° + cos 160° = ….
a. –½√2
b. –½
c. 0
d. ½
e. ½√2
12. Nilai sin 105° + cos 15° = ….
a. ½ ( –√2 – √2 )
b. ½ ( √3 – √2 )
c. ½ ( √6 – √2 )
d. ½ ( √3 + √2 )
e. ½ ( √6 + √2 )
13. Nilai dari 165° = ….
a. 1 – √3
b. –1 + √3
c. –2 – √3
d. 2 – √3
e. 2 + √3
14. Diketahui persamaan cos 2x + cos x = 0, untuk 0 < x < π nilai x yang memenuhi adalah ....
a. π/6 dan π/2
b. π/2 dan π
c. π/3 dan π/2
d. π/3 dan π
e. π/6 dan π/3
15. Diketahui cos ( x – y ) = 4/5 dan sin x.sin y = 3/10. Nilai tan x.tan y = ....
a. –5/3
b. –4/3
c. –3/5
d. 3/5
e. 5/3
16. Diketahui A adalah sudut lancip dan . Nilai sin A adalah ....
a.
b.
c.
d.
e.
17. Nilai sin 15° = ….
a.
b.
c.
d.
e.
18. Diketahui sin .cos  = 8/25. Nilai
a. 3/25
b. 9/25
c. 5/8
d. 3/5
e. 15/8
19. Diketahiu sin x = 8/10, 0 < x < 90°. Nilai cos 3x = ….
a. –18/25
b. –84/125
c. –42/125
d. 6/25
e. –12/25
20. Bentuk ekivalen dengan ....
a. 2 sin x
b. sin 2x
c. 2 cos x
d. cos 2x
e. tan 2x

soal-soal matematika SMA(soal transformasi geometri)
1. Bayangan kurva y = x² – 3 jika dicerminkan terhadap sumbu x yang dilanjutkan dengan dilatasi pusat O dan factor skala 2 adalah ….
a. y = ½ x² + 6
b. y = ½ x² – 6
c. y = ½ x² – 3
d. y = 6 – ½ x²
e. y = ½ x² + 6
2. Bayangan garis 4x – y + 5 = 0 oleh transformasi yang bersesuaian dengan matriks dilanjutkan pencerminan terhadap sumbu y adalah ….
a. 3x + 2y – 30 = 0
b. 6x + 12y – 5 = 0
c. 7x + 3y + 30 = 0
d. 11x + 2y – 30 = 0
e. 11x – 2y – 30 = 0
3. Persamaan peta suatu kurva oleh rotasi pusat O bersudut ½ π, dilanjutkan dilatasi [ 0,2 ] adalah x = 2 + y - y². Persamaan kurva semula adalah ….
a. y = –½ x² – x + 4
b. y = –½ x² + x – 4
c. y = –½ x² + x + 4
d. y = – 2x² + x + 1
e. y = 2x² – x – 1
4. Persamaan bayangan garis 2x + 3y + 1 = 0 karena refleksi terhadap sumbu y dilanjutkan rotasi pusat O sebesar ½ π adalah ….
a. 2x – 3y – 1 = 0
b. 2x + 3y – 1 = 0
c. 3x + 2y + 1 = 0
d. 3x – 2y – 1 = 0
e. 3x + 2y – 1 = 0
5. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y = x adalah ….
a. y = x + 1
b. y = x – 1
c. y = ½ x – 1
d. y = ½ x + 1
e. y = ½ ( x + 1 )
6. Jika titik ( a,b ) dicerminkan terhadap sumbu y, kemudian dilanjutkan dengan transformasi sesuai matriks menghasilkan titik ( 1, – 8 ), maka nilai a + b = ….
a. – 3
b. – 2
c. – 1
d. 1
e. 2
7. Matriks yang bersesuaian dengan dilatasi pusat ( 0,0 ) dan factor skala 3 dilanjutkan dengan refleksi terhadap garis y = x adalah ….
a.
b.
c.
d.
e.
8. Bayangan Δ ABC, dengan A ( 2,1 ). B ( 6,1 ), C ( 5,3 ) karena refleksi terhadap sumbu y dilanjutkan rotasi ( 0,90° ) adalah ….
a. A˝ ( –1,– 2 ), B˝ ( 1,6 ), C˝ ( – 3,– 5 )
b. A˝ ( –1,– 2 ), B˝ ( 1, – 6 ), C˝ ( – 3,– 5 )
c. A˝ ( 1,– 2 ), B˝ ( –1,6 ), C˝ ( – 3,5 )
d. A˝ ( –1,– 2 ), B˝ ( –1, – 6 ), C˝ ( – 3,– 5 )
e. A˝ ( –1,2 ), B˝ ( –1, – 6 ), C˝ ( – 3,– 5 )
9. Persamaan peta garis x – 2y + 4 = 0 yang dirotasikan dengan pusat ( 0,0 ) sejauh +90° dilanjutkan dengan pencerminan terhadap garis y = x adalah ….
a. x + 2y + 4 = 0
b. x + 2y – 4 = 0
c. 2x + y + 4 = 0
d. 2x – y – 4 = 0
e. 2x + y – 4 = 0

Soal-soal matematika SMA(soal suku banyak)
1. Jika f(x) dibagi ( x – 2 ) sisanya 24, sedagkan jika f(x) dibagi dengan ( 2x – 3 ) sisanya 20. Jika f(x) dibagi dengan ( x – 2 ) ( 2x – 3 ) sisanya adalah ….
a. 8x + 8
b. 8x – 8
c. – 8x + 8
d. – 8x – 8
e. – 8x + 6
2. Sisa pembagian suku banyak ( x4 – 4x3 + 3x2 – 2x + 1 ) oleh ( x2 – x – 2 ) adalah ….
a. –6x + 5
b. –6x – 5
c. 6x + 5
d. 6x – 5
e. 6x – 6
2. Suatu suku banyak dibagi ( x – 5) sisanya 13, sedagkan jika dibagi dengan ( x – 1 ) sisanya 5 . Suku banyak tersebut jika dibagi dengan x2 – 6x + 5 sisanya adalah ….
a. 2x + 2
b. 2x + 3
c. 3x + 1
d. 3x + 2
e. 3x + 3
3. Diketahui ( x + 1 ) salah satu factor dari suku banyak f(x) = 2x4 – 2x3 + px2 – x – 2, salah satu factor yang lain adalah ….
a. x – 2
b. x + 2
c. x – 1
d. x – 3
e. x + 3
4. Jika suku banyak P(x) = 2x4 + ax3 – 3x2 + 5x + b dibagi oleh ( x2 – 1 ) memberi sisa 6x + 5, maka a.b = ….
a. – 6
b. – 3
c. 1
d. 6
e. 8
5. Diketahui suku banyak f(x) jika dibagi ( x + 1) sisanya 8 dan dibagi ( x – 3 ) sisanya 4. Suku banyak q(x) jika dibagi dengan ( x + 1 ) bersisa –9 dan jika dibagi ( x – 3 ) sisanya 15 . Jika h(x) = f(x).q(x), maka sisa pembagian h(x) oleh x2 – 2x – 3 sisanya adalah ….
a. –x + 7
b. 6x – 3
c. –6x – 21
d. 11x – 13
e. 33x – 39
6. Suku banyak 6x3 + 13x2 + qx + 12 mempunyai factor ( 3x – 1 ). Faktor linear yang lain adalah ….
a. 2x – 1
b. 2x + 3
c. x – 4
d. x + 4
e. x + 2
7. Suku banyak P(x) = 3x3 – 4x2 – 6x + k habis dibagi ( x – 2 ). Sisa pembagian P(x) oleh x2 + 2x + 2 adalah ….
a. 20x + 24
b. 20x – 16
c. 32x + 24
d. 8x + 24
e. –32x – 16

Soal-soal matematika SMA(soal statistika)
1. Perhatikan tabel berikut !
Berat ( kg ) Frekuensi
31 – 36
37 – 42
43 – 48
49 – 54
55 – 60
61 – 66
67 – 72 4
6
9
14
10
5
2

Modus pada tabel tersebut adalah … kg.
a. 49,06
b. 50,20
c. 50,70
d. 51,33
e. 51,83
2. Perhatikan gambar berikut !

Berat badan siswa pada suatu kelas disajikan dengan histogram seperti pada gambar. Rataan berat badan tersebut adalah … kg.
a. 64,5
b. 65
c. 65,5
d. 66
e. 66,5
3. Nilai rataan dari data pada diagram adalah ….

a. 23
b. 25
c. 26
d. 28
e. 30
4. Rataan skor dari data pada tabel adalah ….
Skor Frekuensi
0 – 4
7 – 9
10 – 14
15 – 19
20 – 24
25 – 29
30 – 34 4
6
9
14
10
5
2

a. 15,5
b. 15,8
c. 16,3
d. 16,5
e. 16,8
5. Median dari data umur pada tabel di samping adalah ….
Skor Frekuensi
4 – 7
8 – 11
12 – 15
16 – 19
20 – 23
24 – 27 6
10
18
40
16
10

a. 16,5
b. 17,1
c. 17,3
d. 17,5
e. 18,3
6. Histogram pada gambar menunjukkan nilai tes matematika di suatu kelas. Nilai rata – rata = ….

a. 69
b. 69,5
c. 70
d. 70,5
e. 71
7. Diagram di bawah ini menyajikan data berat badan ( dalam kg ) dari 40 siswa, modusnya adalah ….

a. 46,1
b. 46,5
c. 46,9
d. 47,5
e. 48,0
8. Modus dari histogram berikut adalah ….

a. 47,5
b. 46,5
c. 46,4
d. 45,2
e. 44,7

Soal-soal matematika SMA(soal persamaan linier)
1. Ani, Nia, dan Ina pergi bersama – sama ke toko buah. Ani membeli 2 kg apel, 2 kg anggur, dan I kg jeruk dengan harga Rp 67.000,00. Nia membeli 3 kg apel, 1 kg anggur, dan I kg jeruk dengan harga Rp 61.000,00. Ina membeli 1 kg apel, 3 kg anggur, dan 2 kg jeruk dengan harga Rp 80.000,00. Harga 1 kg apel, 1 kg anggur, dan 4 kg jeruk seluruhnya adalah ….
a. Rp 37.000,00
b. Rp 44.000,00
c. Rp 51.000,00
d. Rp 55.000,00
e. Rp 58.000,00
2. Harga 2 kg mangga, 2 kg jeruk dan 1 kg anggur adalah Rp. 70.000,00. Harga 1 kg mangga, 2 kg jeruk dan 2 kg anggur adalah Rp. 90.000,00. Harga 2 kg mangga, 2 kg jeruk dan 3 kg anggur adalah Rp. 130.000,00, maka harga 1 kg jeruk adalah ….
a. Rp 5.000,00
b. Rp 7.500,00
c. Rp 10.000,00
d. Rp 12.000,00
e. Rp 15.000,00
3. Tujuh tahun yang lalu umur ayah sama dengan 6 kali umur Budi. Empat tahun yang akan dating 2 kali umur ayah sama dengan 5 kali umur Budi ditambah 9 tahun. Umur ayah sekarang adalah … tahun.
a. 39
b. 43
c. 49
d. 54
e. 78
4. Diketahui system persamaan linier :

Nilai x + y + z = ….
a. 3
b. 2
c. 1
d. ½
e.
5. Nilai z yang memenuhi system persamaan

a. 0
b. 1
c. 2
d. 3
e. 4
6. Sebuah kios fotokopi memiliki dua mesin. Mesin A sedikitnya dapat memfotokopi 3 rim perjam sedangkan mesin B sebanyak 4 rim perjam. Jika pada suatu hari mesin A dan mesin B jumlah jam kerjanya 18 jam danmenghasilkan 60 rim, maka mesin A sedikitnya menghasilkan … rim.
a. 16
b. 24
c. 30
d. 36
e. 40
7. Himpunan penyelesaian system persamaan

Adalah { xo.yo }. Nilai 6xo.yo = …
a. 1/6
b. 1/5
c. 1
d. 6
e. 36

Soal-soal matematika SMA(soal peluang)
Materi pokok : Kaidah Perkalian, Permutasi, dan kombinasi
1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada … cara.
a. 70
b. 80
c. 120
d. 360
e. 720
2. Banyaknya bilangan antara 2000 dan 6000 yang dapat disusun dari angka 0,1,2,3,4,5,6,7, dan tidak ada angka yang sama adalah ….
a. 1680
b. 1470
c. 1260
d. 1050
e. 840
3. Dari kota A ke kota B dilayani oleh 4 bus dan dari B ke C oleh 3 bus. Seseorang berangkat dari kota A ke kota C melalui B kemudian kembali lagi ke A juga melalui B. Jika saat kembali dari C ke A, ia tidak mau menggunakan bus yang sama, maka banyak cara perjalanan orang tersebut adalah ….
a. 12
b. 36
c. 72
d. 96
e. 144
4. Banyak garis yang dapat dibuat dari 8 titik yang tersedia, dengan tidak ada 3 titik yang segaris adalah ….
a. 336
b. 168
c. 56
d. 28
e. 16
Materi pokok : Peluang dan Kejadian Majemuk
5. Dalam kantong I terdapat 5 kelereng merah dan 3 kelereng putih, dalam kantong II terdapat 4 kelereng merah dan 6 kelereng hitam. Dari setiap kantong diambil satu kelereng secara acak. Peluang terambilnya kelereng putih dari kantong I dan kelereng hitam dari kantong II adalah ….
a. 39/40
b. 9/13
c. 1/2
d. 9/20
e. 9/40
6. A,B,C, dan D akan berfoto secara berdampingan. Peluang A dan B selalu berdampingan adalah ….
a. 1/12
b. 1/6
c. 1/3
d. 1/2
e. 2/3
7. Sebuah kotak berisi 5 bola merah, 4 bola biru, dan 3 bola kuning. Dari dalam kotak diambil 3 bola sekaligus secara acak, peluang terambil 2 bola merah dan 1 bola biru adalah ….
a. 1/10
b. 5/36
c. 1/6
d. 2/11
e. 4/11
8. Dalam suatu populasi keluarga dengan tiga orang anak, peluang keluarga tersebut mempunyai paling sedikit dua anak laki – laki adalah ….
a. 1/8
b. 1/3
c. 3/8
d. 1/2
e. 3/4
9. Dua buah dadu dilempar bersama – sama. Peluang munculnya jumlah mata dadu 9 atau 10 adalah ….
a. 5/36
b. 7/36
c. 8/36
d. 9/36
e. 11/36
10. Sebuah dompet berisi uang logam, 5 keping lima ratusan dan 2 keping ratusan rupiah. Dompet yag lain berisi uang logam 1 keping lima ratusan dan 3 keping ratusan rupiah. Jika sebuah uang logam diambil secara acak dari salah satu dompet, peluang untuk mendapatkan uang logam ratusan rupiah adalah ….
a. 3/56
b. 6/28
c. 8/28
d. 29/56
e. 30/56
11. Suatu kelas terdiri dari 40 orang. Peluang seorang siswa lulus tes matematika adalah 0,4. Peluang seorang siswa lulus fisika adalah 0,2. Banyaknya siswa yang lulus tes matematika atau fisika adalah … orang.
a. 6
b. 7
c. 14
d. 24
e. 32
12. Kotak I berisi 3 bola merah dan 2 bola putih, Kotak II berisi 3 bola hijau dan 5 bola biru. Dari masing – masing kotak diambil 2 bola sekaligus secara acak. Peluang terambilnya 2 bola merah dari kotak I dan 2 bola biru dari kotak II adalah ….
a. 1/10
b. 3/28
c. 4/15
d. 3/8
e. 57/110
13. Suatu kelas terdiri dari 40 siswa. 25 siswa gemar matematika, 21 siswa gemar IPA, dan 9 siswa gemar matematika dan IPA. Peluang seorang tidak gemar matematika maupun IPA adalah ….
a. 25/40
b. 12/40
c. 9/40
d. 4/40
e. 3/40

Soal-soal matematika SMA(soal logika matematika)
Materi pokok : Invers, Konvers, Kontraposisi
1. Kontraposisi dari pernyataan majemuk p → ( p V ~q ) adalah ….
a. ( p V ~q ) → ~p
b. (~p Λ q ) → ~p
c. ( p V ~q ) → p
d. (~p V q ) → ~p
e. ( p Λ ~q ) → ~p
2. Invers dari pernyataan p → ( p Λ q )
a. (~p Λ ~q ) → ~p
b. (~p V ~q ) → ~p
c. ~p → (~p Λ ~q )
d. ~p → (~p Λ q )
e. ~p → (~p V ~q )
Materi pokok : Penarikan Kesimpulan
3. Diketahui pernyataan :
I. Jika hari panas, maka Ani memakai topi
II. Ani tidak memakai topi atau ia memakai payung
III. Ani tidak memakai payung
Kesimpulan yang sah adalah ….
a. Hari panas
b. Hari tidak panas
c. Ani memakai topi
d. Hari panas dan Ani memakai topi
e. Hari tidak panas dan Ani memakai topi
4. Penarikan kesimpulan yang sah dari argumentasi berikut :
Jika Siti sakit maka dia pergi ke dokter
Jika Siti pergi ke dokter maka dia diberi obat.
adalah ….
a. Siti tidak sakit atau diberi obat
b. Siti sakit atau diberi obat
c. Siti tidak sakit atau tidak diberi obat
d. Siti sakit dan diberi obat
e. Siti tidak sakit dan tidak diberi obat
5. Diketahui premis berikut :
I. Jika Budi rajin belajar maka ia menjadi pandai.
II. Jika Budi menjadi pandai maka ia lulus ujian.
III. Budi tidak lulus ujian.
Kesimpulan yang sah adalah ….
a. Budi menjadi pandai
b. Budi rajin belajar
c. Budi lulus ujian
d. Budi tidak pandai
e. Budi tidak rajin belajar
Soal Ujian Nasional tahun 2005 kurikulum 2004
6. Diketahui argumentasi :
I. p → q
~p
----------
 ~q
II. p → q
~q V r
----------
 p → r
III. p → q
p → r
----------
 q → r
Argumentasi yang sah adalah ….
a. I saja
b. II saja
c. III saja
d. I dan II saja
e. II dan III saja
7. Penarikan kesimpulan yang sah dari argumen tasi berikut :
~p → q
q → r
----------
 …
a. p Λ r
b. ~p V r
c. p Λ ~r
d. ~p Λ r
e. p V r
8. Ditentukan premis – premis :
I. Jika Badu rajin bekerja maka ia disayang ibu.
II. Jika Badu disayang ibu maka ia disayang nenek
III. Badu tidak disayang nenek
Kesimulan yang sah dari ketiga premis diatas adalah ….
a. Badu rajin bekerja tetapi tidak disayang ibu
b. Badu rajin bekerja
c. Badu disayang ibu
d. Badu disayang nenek
e. Badu tidak rajin bekerja
9. Penarikan kesimpulan dengan menggunakan modus tolens didasarkan atas suatu pernyataan majemuk yang selalu berbentuk tautologi untuk setiap kasus. Pernyataan yang dimaksud adalah ….
a. ( p → q ) Λ p → q
b. ( p → q ) Λ ~q → ~p
c. ( p → q ) Λ p → ( p Λ q )
d. ( p → q ) Λ ( q → r ) → ( p → r )
e. ( p → q ) Λ ( p → r ) → ~ ( q → r )
10. Kesimpulan dari premis berikut merupakan ….
p → ~q
q V r
----------
 p → r
a. konvers
b. kontra posisi
c. modus ponens
d. modus tollens
e. silogisme

Soal-soal matematika SMA(soal lingkaran)
1. Salah satu persamaan garis singgung lingkaran ( x – 2 )² + ( y + 1 )² =13 di titik yang berabsis –1 adalah ….
a. 3x – 2y – 3 = 0
b. 3x – 2y – 5 = 0
c. 3x + 2y – 9 = 0
d. 3x + 2y + 9 = 0
e. 3x + 2y + 5 = 0
2. Persamaan garis singgung lingkaran x² + y² – 2x – 6y – 7 = 0 di titik yang berabsis 5 adalah ….
a. 4x – y – 18 = 0
b. 4x – y + 4 = 0
c. 4x – y + 10 = 0
d. 4x + y – 4 = 0
e. 4x + y – 15 = 0
3. Persamaan lingkaran yang pusatnya terletak pada garis 2x – 4y – 4 = 0, serta menyinggung smbu x negative dan sumbu y negative adalah ….
a. x² + y² + 4x + 4y + 4 = 0
b. x² + y² + 4x + 4y + 8 = 0
c. x² + y² + 2x + 2y + 4 = 0
d. x² + y² – 4x – 4y + 4 = 0
e. x² + y² – 2x – 2y + 4 = 0
4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x – 4y – 2 = 0 adalah ….
a. x² + y² + 3x – 4y – 2 = 0
b. x² + y² – 4x – 6y – 3 = 0
c. x² + y² + 2x + 8y – 8 = 0
d. x² + y² – 2x – 8y + 8 = 0
e. x² + y² + 2x + 2y – 16 = 0
5. Salah satu persamaan garis singgung lingkaran x² + y² = 25 yang tegak lurus garis 2y – x + 3 = 0 adalah….
a.
b.
c.
d.
e.
6. Persamaan garis singgung lingkaran x² + y² – 4x + 2y – 20 = 0 di titik P( 5,3 ) adalah ….
a. 3x – 4y + 27 = 0
b. 3x + 4y – 27 = 0
c. 3x + 4y – 7 = 0
d. 7x + 4y – 17 = 0
e. 7x + 4y – 7 = 0
7. Jarak antara titik pusat lingkaran x² + y² – 4x + 4 = 0 dari sumbu y adalah ….
a. 3
b. 2 ½
c. 2
d. 1 ½
e. 1
8. Diketahui lingkaran 2x² + 2y² – 4x + 3py – 30 = 0 melalui titik ( – 2,1 ). Persamaan lingkaran yang sepusat tetapi panjang jari – jarinya dua kali panjang jari – jari lingkaran tadi adalah ….
a. x² + y² – 4x + 12y + 90 = 0
b. x² + y² – 4x + 12y – 90 = 0
c. x² + y² – 2x + 6y – 90 = 0
d. x² + y² – 2x – 6y – 90 = 0
e. x² + y² – 2x – 6y + 90 = 0
9. Persamaan garis singgung lingkaran x² + y² = 13 yang melalui titik ( 3,–2 ) adalah ….
a. 3x – 2y = 13
b. 3x – 2y = –13
c. 2x – 3y = 13
d. 2x – 3y = –13
e. 3x + 2y = 13
10. Salah satu persamaan garis singgung dari titik( 0,4 ) pada lingkaran x² + y² = 4 adalah ….
a. y = x + 4
b. y = 2x + 4
c. y = – x + 4
d. y = – x + 4
e. y = – x + 4
11. Garis singgung lingkaran x² + y² = 25 di titik ( –3,4 ) menyinggung lingkaran dengan pusat ( 10,5 ) dan jari – jari r. Nilai r = ….

a. 3
b. 5
c. 7
d. 9
e. 11

Soal-soal matematika SMA(soal deret)
Materi Pokok : Barisan dan Deret Aritmetika
1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah ….
a. 840
b. 660
c. 640
d. 630
e. 315
2. Seorang ibu membagikan permen kepada 5 orang anaknya menurut aturan deret aritmetika. Semakin muda usia anak semakin banyak permen yang diperoleh. Jika banyak permen yang diterima anak kedua 11 buah dan anak keempat 19 buah, maka jumlah seluruh permen adalah …buah.
a. 60
b. 65
c. 70
d. 75
e. 80
3. Seorang anak menabung di suatu bank dengan selisih kenaikan tabungan antar bulan tetap. Pada bulan pertama sebesar Rp. 50.000,00, bulan kedua Rp.55.000,00, bulan ketiga Rp.60.000,00, dan seterusnya. Besar tabungan anak tersebut selama dua tahun adalah ….
a. Rp. 1.315.000,00
b. Rp. 1.320.000,00
c. Rp. 2.040.000,00
d. Rp. 2.580.000,00
e. Rp. 2.640.000,00
4. Dari suatu deret aritmetika diketahui U3 = 13 dan U7 = 29. Jumlah dua puluh lima suku pertama deret tersebut adalah ….
a. 3.250
b. 2.650
c. 1.625
d. 1.325
e. 1.225
5. Suku ke – n suatu deret aritmetika Un = 3n – 5. Rumus jumlah n suku pertama deret tersebut adalah ….
a. Sn = n/2 ( 3n – 7 )
b. Sn = n/2 ( 3n – 5 )
c. Sn = n/2 ( 3n – 4 )
d. Sn = n/2 ( 3n – 3 )
e. Sn = n/2 ( 3n – 2 )
6. Jumlah n buah suku pertama deret aritmetika dinyatakan oleh Sn = n/2 ( 5n – 19 ). Beda deret tersebut adalah ….
a. – 5
b. – 3
c. – 2
d. 3
e. 5
7. Empat buah bilangan positif membentuk barisan aritmetika. Jika perkalian bilangan pertama dan keempat adalah 46, dan perkalian bilangan kedua dan ketiga adalah 144, maka jumlah keempat bilangan tersebut adalah ….
a. 49
b. 50
c. 60
d. 95
e. 98
8. Jumlah n suku pertama deret aritmetika adalah Sn = n2 + 5/2 n. Beda dari deret aritmetika tersebut adalah ….
a. – 11/2
b. – 2
c. 2
d. 5/2
e. 11/2
9. Dari deret aritmetika diketahui suuku tengah 32. Jika jumlah n suku pertama deret itu 672, banyak suku deret tersebut adalah ….
a. 17
b. 19
c. 21
d. 23
e. 25
Materi Pokok : Barisan dan Deret Geometri
10. Sebuah mobil dibeli dengan haga Rp. 80.000.000,00. Setiap tahun nilai jualnya menjadi ¾ dari harga sebelumnya. Berapa nilai jual setelah dipakai 3 tahun ?
a. Rp. 20.000.000,00
b. Rp. 25.312.500,00
c. Rp. 33.750.000,00
d. Rp. 35.000.000,00
e. Rp. 45.000.000,00
11. Sebuah bola jatuh dari ketinggian 10 m dan memantul kembali dengan ketinggian ¾ kali tinggi sebelumnya, begitu seterusnya hingga bola berhenti. Jumlah seluruh lintasan bola adalah ….
a. 65 m
b. 70 m
c. 75 m
d. 77 m
e. 80 m
12. Seutas tali dipotong menjadi 7 bagian dan panjang masing – masing potongan membentuk barisan geometri. Jika panjang potongan tali terpendek sama dengan 6 cm dan potongan tali terpanjang sama dengan 384 cm, panjang keseluruhan tali tersebut adalah … cm.
a. 378
b. 390
c. 570
d. 762
e. 1.530
13. Sebuah bola pingpong dijatuhkan dari ketinggian 25 m dan memantul kembali dengan ketinggian 4/5 kali tinggi semula. Pematulan ini berlangsung terus menerus hingga bola berhenti. Jumlah seluruh lintasan bola adalah … m.
a. 100
b. 125
c. 200
d. 225
e. 250
14. Jumlah deret geometri tak hingga 2 + 1 + ½2 + ½ + … adalah ….
a. 2/3 (2 + 1 )
b. 3/2 (2 + 1 )
c. 2 (2 + 1 )
d. 3 (2 + 1 )
e. 4 (2 + 1 )
15. Jumlah deret geometri tak hingga adalah 7, sedangkan jumlah suku – suku yang bernomor genap adalah 3. Suku pertama deret tersebut adalah ….
a. 7/4
b. ¾
c. 4/7
d. ½
e. ¼
16. Pertambahan penduduk suatu kota tiap tahun mengikuti aturan barisan geometri. Pada tahun 1996 pertambahannya sebanyak 6 orang, tahun 1998 sebanyak 54 orang. Pertambahan penduduk pada tahun 2001 adalah … orang.
a. 324
b. 486
c. 648
d. 1.458
e. 4.374
17. Diketahui barisan geometri dengan U1 = x ¾ dan U4 = xx. Rasio barisan geometri tesebut adalah ….
a. x2 .4x
b. x2
c. x ¾
d. x
e. 4x


sumber : http://girsangardho.blogspot.com